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Abstract
Applications often have large runtime memory require-
ments. In some cases, large memory footprint helps accom-
plish an important functional, performance, or engineering
requirement. A large cache, for example, may ameliorate a
pernicious performance problem. In general, however, find-
ing a good balance between memory consumption and other
requirements is quite challenging. To do so, the develop-
ment team must distinguish effective from excessive use of
memory.

We introduce health signatures to enable these distinc-
tions. Using data from dozens of applications and bench-
marks, we show that they provide concise and application-
neutral summaries of footprint. We show how to use them to
form value judgments about whether a design or implemen-
tation choice is good or bad. We show how being indepen-
dent of any application eases comparison across disparate
implementations. We demonstrate the asymptotic nature of
memory health: certain designs are limited in the health they
can achieve, no matter how much the data size scales up. Fi-
nally, we show how to use health signatures to automatically
generate formulas that predict this asymptotic behavior, and
show how they enable powerful limit studies on memory
health.

Categories and Subject Descriptors D.2.8 Metrics [per-
formance measures]

General Terms Memory Footprint, Data Structure Design,
Characterization

Keywords bloat, memory footprint, metrics, limit studies
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1. Introduction
It is fairly easy these days to design and implement a data
model in a way that consumes a large amount of memory.
For example, we have seen Java server applications that
require a gigabyte of memory to support a few thousand
users. That a data structure is big is of course a sign for
concern. We propose that the health of a data structure’s use
of memory depends not so much on its size, but rather on the
relationship between actual data and structural overhead.

The makeup of memory depends on the design of data
types, and the way instances of these types are glued to-
gether into collections [19, 20]. Consider an example data
model with entities E1, E2, and E3; each instance of E3 has
a single byte field of actual data, each E2 contains one or
more E3 instances, and each E1 contains one or more E2 in-
stances. Developers must choose how to map this model to
a physical implementation. In an object oriented language,
one typically maps each entity to a class, and uses a standard
collection, such as the Java LinkedList, to store the multi-
valued relationships. Unfortunately, this implementation re-
sults in an extremely unhealthy heap. With fan-out of 1000
at each level, this implementation’s fraction of actual data is
only 10%. Furthermore, as Section 4 shows, the fraction of
actual data can never be better than 10% — no matter how
many instances of E2 or E3 there are to amortize bookkeep-
ing overheads.

In this paper, we first introduce a scheme for exposing the
underlying causes of such poor health. Second, we leverage
this scheme to introduce a way to determine whether a data
design will ever be good.

The Causes of Bloat Depending on the data type design,
each instance will use its bytes for a variety of purposes.
Section 2.1 introduces an instance health categorization sys-
tem that divides the bytes of each instance into one of four
application-neutral [18] categories: primitive data, header
bytes, pointers, and null pointers. For example, each instance
of E3 above has only a single byte of primitive data, but 12
bytes of JVM-imposed object header.

Depending on the collection design, each instance will
serve one of a number of purposes. For example, each in-



stance of LinkedList serves as a wrappers to the collection
as a whole. A consequence of this design is that, when
LinkedLists are nested [2], the wrapper cost is magnified.
Section 2.2 introduces a collection health categorization
system that divides instances into one of four application-
neutral categories based on the role they play in collections.

Combining these two classification schemes yields deeper
insight into whether bytes are serving a useful purpose. For
example, when we contrast the two primitive fields in each
LinkedList instance, used for bookkeeping purposes, with
the primitive byte field in E3, we see that not all primitive
data should be judged equally. The role of an object can
give valuable clues into the purpose of its bytes. Section 2.3
introduces the health signature, the composition of the col-
lection and instance health categorizations; it is formed by
intersecting the two categorizations. We present health sig-
natures from a variety of applications and benchmarks.

To tie questions about features of a design to their mem-
ory consequences, Section 3 introduces health judgment
schemes. A judgment scheme maps a set of features to the
design’s health signature. Features of interest will vary de-
pending on the analysis. We introduce two schemes. The
overhead judgment scheme highlights, as features of the de-
sign, the various ways overhead is introduced. For example,
we can analyze the amount of pointer overhead that a design
incurs. Section 3.1 shows that a HashMap of 2-characters
Strings will devote 29% of its space to pointer overhead.

The scaling judgment scheme is focused on collections,
and the fixed and per-element costs they incur. The mem-
ory impact of collection choices can be difficult to predict,
particularly when using standard collections whose imple-
mentations are hidden. The scaling judgment scheme helps
to surface these costs. For example, Section 3.3 shows a real
application that devotes a surprising 74% of its memory to
collection fixed and per-element costs.

Another benefit of judgment schemes is as a concise
health summary. We present these summaries for dozens of
applications, to illustrate the great variety of health charac-
teristics. The application neutrality of the health signature
enables comparison of these disparate applications. In addi-
tion, Section 3.3 provides a detailed example of how each
scheme offers distinct insights into a real-world memory
problem.

The Limits of Health From a health judgment, we can
derive a health metric: the ratio of actual data to the total.
We have observed that this ratio has asymptotic behavior.
For example, our LinkedList of LinkedLists of E3 objects
will never contain more than 10% actual data; the application
discussed in Section 3.3 can never contain more than 17%.
Section 4 demonstrates this behavior, and presents a way
to derive scaling formulas that predict it. We show how the
scaling properties of a nested data structure depend upon the
structure of that nesting. We introduce the content schematic,
a concise summary of this nesting structure. The content

schematic of a data structure identifies the distinct contexts
in a data structure that may vary in size as the application
runs. We show how to combine a scaling judgment scheme
with the content schematic in order to automatically derive
formulas. We present several example studies to demonstrate
the power of scaling formulas in pinpointing the limits of
health for a given design.

Summary This paper presents the following contributions:

• two application-neutral systems that classify the role of
bytes in objects, and the role of objects in collections

• health signatures that distinguish the role of bytes based
on the role of objects in collections

• a judgment scheme to distinguish the sources of overhead
in a design, and a second scheme to expose the design’s
scaling properties

• a technique for finding and summarizing the data struc-
tures in a heap snapshot into content schematics

• an algorithm for automatically constructing scaling for-
mulas to gauge the asymptotic health of a data structure

2. The Health Signature
We summarize a heap snapshot, or a subset of a snapshot, to
identify potential inefficiencies in the way memory is struc-
tured. A health signature is a two-dimensional summary us-
ing two distinct categorizations of memory:

• instance health: for each object, categorize its bytes
according to the function those bytes serve.

• collection health: for each data collection, categorize its
constituent objects according to the function each serves
in implementing the collection’s functionality.

In both cases, the categories are application-neutral, in the
sense that they are not in terms of data types, or any other
such application-specific artifacts. We begin by introducing
the categories, and then show how to derive health signatures
from them.

2.1 Instance Health
Every instance of a data type consumes a certain number
of bytes in the runtime heap. Some of these bytes store
the type’s instance variables, while some store information
needed by the underlying runtime, such as for garbage col-
lection or lightweight synchronization. We categorize the
bytes of an object in this way: by what purpose those bytes
implement or facilitate.

Table 1 shows the four categories of instance health. The
first category covers all primitive data, whether from prim-
itive fields of objects, or from arrays of primitive data. In
Java, each primitive element consumes one, two, four, or
eight bytes. The second category accounts for the bookkeep-
ing information that the runtime sets aside to help manage
each object, commonly termed “object header”. The runtime



category explanation # bytes
primitive prim. array elements, prim. fields 1–8
header space imposed by VM 12–16
pointer references between objects 4
null unused pointers 4

Table 1. The categories of instance health, with sizes for a
typical 32-bit Java VM.

null pointerspointerheader

primitives

(from fields)

header primitives

(from array)header

pointer

String[]

char[]

String

(a) An data structure composed of an array of strings, showing one string
with its three primitive fields and that string’s 2-element character array.

primitive header pointer null total
16 40 8 8 72

(b) The instance health categorization of this data structure,
with category sizes in bytes.

Figure 1. An example of instance health.

uses this header to facilitate tasks such as garbage collection,
lightweight synchronization, and reflection. The size of each
object header is usually independent of the instances type;
many Java virtual machines impose a 12- or 20-byte object
header, depending on whether it uses 32- or 64-bit address-
ing. The header of array instances differs from that of ob-
ject instances. For example, in Java, it is common to have
a twelve-byte object header, with an additional 1–4 bytes to
keep track of an array’s length.1

The final two categories cover bytes set aside for pointers
between objects. Each pointer slot, whether from a field
of an object or from an array of pointers, consumes one
word (either 32 or 64 bits on most contemporary virtual
machines). This is the same even if the pointer is null. Null
array slots occur in the common case of an application that
allocates an array with some default capacity, but only makes
use of a smaller number of elements during the course of its
run. The third category includes bytes from pointer slots that
refer to extant objects, and the fourth category includes the
null case.

1 There are two other cases of per-instance variation of object header size:
fragmentation due to object alignment, and hashcodes stored in object
headers. This information is available only in some JVMs. In cases where
we do have it we include it in the object header category.

category explanation example
head head of a collection HashMap, String
array array backbone HashMap$Entry[]
entry list-style element HashMap$Entry
contained anything else char[]

Table 2. The categories of collection health.

Figure 1 illustrates an instance health categorization. The
figure shows an array of Java String objects, the one String
in that array, and the character array object which underlies
that String. On a 32-bit platform with 12-byte object headers
and 8-byte alignment, this example will consume a total of
72 bytes: 40 from object headers, 8 from pointers, 8 from
null pointers, and only 16 from primitive data. Furthermore,
of those 16 bytes, only 4 come from the true data of this
structure: the two characters in the String’s character array.
To come to this conclusion requires a categorization of ob-
jects that distinguishes the String from its character array.

2.2 Collection Health
We now address sources of bloat that stem from the way
individual objects are glued together into larger collections.
Inside every collection will of course be the actual data in-
tended to be collected together. Unfortunately, the actual
data may only occupy a small fraction of the collection’s to-
tal size. Everything else represents the infrastructure costs.
This dichotomy, between actual data and collection infras-
tructure, is the basis for our second categorization scheme.
Whereas the instance health breaks down the bytes of each
instance, the collection health analysis categorizes the ob-
jects of a collection.

Each instance inside a collection serves one of four pri-
mary roles [15]. Table 2 shows these four categories of col-
lection health. First, every collection consists of a number of
“backbones” that allow the collection to contain a variable
number of objects. Some backbones are arrays, which are
commonly used when append-only random access is needed.
Other backbones have a chained or recursive structure, to
allow for efficient random insertion and deletion. We label
these as entry instances. For example, in the Java stan-
dard libraries, instances of the data type LinkedList$Entry
fall into this category.

Next, many data structure implementations include a
data type that represents the collection as a whole; in the
Java standard libraries, such data types include HashSet and
LinkedList. In fact, every implementation in the Java collec-
tions library was designed so as to devote one instance to
serve this role. The head category includes these heads of
collections. In general, we include in this category any in-
stance that points to to an array or entry instance. The final
category, contained, includes what remains; it includes the
non-infrastructure instances inside collections.2

2 It also includes the relatively few instances outside any collection.
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(a) A data structure composed of a hash set containing three strings, and
showing each string with its 2-entry character array.

contained head array entry total
48 144 76 96 364

(b) The collection health categorization of this data struc-
ture, with category sizes in bytes.

Figure 2. An example of collection health.

Figure 2 shows an example collection health categoriza-
tion. This heap contains a HashMap whose keys and values
are Java Strings, and the Strings in turn contain character ar-
rays. We consider the case where the key and value point to
the same object,3 and show only a single edge to the Strings,
to reduce clutter in the figure. The top-most node in the fig-
ure, representing the HashMap , falls into the head category.
The Strings also fall into the head category, since they refer
to the arrays of primitive characters. Using instance sizing
information from IBM Java 1.5, this heap consumes a to-
tal of 364 bytes. Of that, 144 bytes, 40% of the total, be-
longs to the head category: three strings, each 32 bytes, and
one hash map; 76 bytes belongs to the array category, from
the four-element array; 96 bytes, 26% of the total, belong to
the entry category: three hash map entry objects; and 48
bytes, only 13%, belong to the contained category: three
2-element primitive arrays.

2.3 Composing the Two Classifications
The composition of instance health and collection health lets
us study the role of an instance’s bytes in the context of
a collection. For example, bytes that seem reasonable (e.g.
primitive data) may come mostly from objects that serve an
infrastructure role, and that one did not realize would incur
such a great memory overhead. Conversely, bytes that seem
to be excessive (e.g. pointer bytes) may come from infras-
tructure objects that enable a useful function (e.g. offering
random insertion and deletion).

With four categories in each categorization system, a
health signature is a 4 × 4 matrix. Each entry is the number

3 This is a common situation used to pool objects, since the Java HashSet
does not support a lookup() method.

primitive header pointer null total
contained 12 36 0 0 48

head 56 60 16 12 144
array 0 12 8 56 76
entry 12 48 16 20 96
total 80 156 40 88 364

Table 3. The health signature for the example in Figure 2.

of bytes in the intersection of a collection health category
and an instance health category.

In Table 3 we show the health signature for the data struc-
ture in Figure 2. The leftmost column shows the distribution
of primitive bytes, which at the surface we might consider
to be the “actual data” of the data structure. We see, how-
ever, that most of the primitive bytes are found in head ob-
jects. Each String in Java contains three primitive fields for
bookkeeping purposes: a memo of the string’s hash code, the
string’s length, and an offset, in case the underlying charac-
ters are shared. Each HashMap, also a head instance, de-
votes five primitive fields to bookkeeping. The only actual
data in this data structure is found in the String’s charac-
ter array, the 12 bytes shown in the contained-primitive
cell. Similarly, each HashMap has four pointer fields, three
of which are null by default. These are used for caching in
cases which may not occur. We contrast them with the 56
bytes in the array-null category, a sign that an array may
have been sized too large. By taking into account the context
in which bytes are used, the health signature allows us to
make these finer distinctions about the ways a design spends
its bytes.

Figure 3 presents health signatures from four snapshots,
and illustrates the very different signatures that show up in
practice. Figure 3(a) shows the health signature of a Da-
Capo benchmark called antlr. The signature indicates that
antlr devotes 70% of its bytes to primitive bytes within con-
tained objects; the number of bytes spent in pointers, arrays
and list-style entries are all small fractions of the total heap
size. Figure 3(b) shows the very different health signature of
javac, a benchmark from the SPECJVM98 suite. In contrast
to antlr, javac spends only 20% of its bytes in the primitive-
contained intersection. In addition, object headers and point-
ers show up in much greater concentration. The health signa-
ture of Figure 3(c) comes from application S. Its health sig-
nature seems to indicate some severe problems with memory
health. In particular, contained objects do not consume a plu-
rality of the heap, and primitive data appears mostly in heads
of collections. The fourth snapshot, from a J2EE [22] server
application, has characteristics in common with each of the
other three applications.

2.4 Implementation Details
To automatically categorize by instance or collection health,
our implementation analyzes heap snapshots. To collect
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Figure 3. Four example health signatures.

snapshots, we used the built-in facilities of Java virtual ma-
chines (JVM) to trigger writing a snapshot to disk. In some
cases, the JVM produced a snapshot upon heap exhaustion.
In other cases, we explicitly requested them.

2.4.1 Instance Health Implementation
Membership of bytes in a category is a local property of each
object. Therefore, categorizing bytes is mostly a straightfor-
ward task: for each instance, count up the header and pointer
bytes, and consider primitive bytes to be the instance’s total
size minus that sum. Depending on the richness of informa-
tion provided by the heap snapshot format, however, there
may be several wrinkles.

First, it may not be possible to distinguish null field
slots from primitive data bytes with certainty. For example,
most heap snapshot formats do not describe the field layout;
rather, they specify the size of each type’s instances, and, for
each instance, its number of outgoing non-null references. In
this situation, we conservatively estimate the number of null
references by computing the maximum number of non-null
references, over all instances of each type.

Second, it is usually infeasible to detect uninitialized
primitive data. Therefore, the numbers reported in this paper
are based on the assumption that the bytes of a primitive
array always contain meaningful data.

2.4.2 Collection Health Implementation
The heap snapshot is a graph, where nodes correspond to
objects and edges correspond to references between objects.
We first compute a spanning forest over the graph. The forest
we use is based on the dominator relation [15] because it
eliminates back edges in a reliable way — one that does
not depend on an arbitrary ordering of graph roots. We
categorize data types based on a purely structural analysis
of the spanning forest (so that “refers to” below means in

the spanning forest). From the categorization of types, it is
trivial to categorize objects, based on their type.

Every array of reference type belongs to the array cate-
gory. Now consider a type having an instance that immedi-
ately refers to a different instance of that type. All instances
of such types belong to the entry category. This strategy
under-approximates the set of all list-style and recursive data
types. Computing this property in general from only a struc-
tural analysis of the graph is a challenge for future research.
Then, we categorize as head any type with an instance that
immediately points to to an object whose type is either cate-
gorized array, entry, or is a primitive array. Any remain-
ing data types are considered to be contained.

This implementation maps every object to a single cate-
gory, except in the case of nested collections. Whenever a
collection contains other collections, each collection head is
also a contained object. For this paper, we prioritize the
categories, to ensure that each object falls into one category:
we give priority to the array and entry categories, fol-
lowed by head, and then contained objects. In this way,
all of the LinkedList objects in a list of lists will be consid-
ered to be heads of collections.

3. Judgment Schemes
For a developer experienced with a code base and with mem-
ory health analysis, a health signature can provide a neces-
sary level of detail for problem resolution. For developers
new to the code or to memory analysis, a summary that in-
corporates some amount of a priori judgment may be nec-
essary. A health signature imposes no value judgments on
whether an application’s use of memory is good or bad.
Moreover, a health signature is a two-dimensional summary.
A one-dimensional summary can make deviations from ex-
pected norms quickly apparent. It can also enable bulk com-
parisons across versions, data structures, diverse applica-
tions, and varying load scenarios.
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Table 4. The overhead health judgment scheme.

overhead judgment size
data 24
primitive overhead 56
small objects 156
pointer overhead 104
collection glue 24
total 364

Table 5. The overhead judgment scheme applied to the ex-
ample in Figure 2.

In this section we introduce health judgment schemes,
one-dimensional summaries of memory health signatures.
Health judgment schemes can be designed for specific anal-
ysis tasks, combining elements in health signatures to bring
out certain features. We demonstrate two health judgment
schemes. An overhead judgment scheme, described in Sec-
tion 3.1, highlights common ways in which overhead is
introduced into a design. A scaling judgment scheme, de-
scribed in Section 3.2, can help evaluate collection choices
and can expose how a data structure will scale. In Section 3.3
we apply these two judgment schemes to a real-world mem-
ory problem.

3.1 The Overhead Judgment Scheme
We introduce the overhead judgment scheme to help distin-
guish the data in a data structure from the structure’s over-
head. We consider the ways in which space for primitive
fields, object headers, and pointers may be introduced into
a design. Table 4 shows how this scheme judges the cate-
gories from a health signature.

A design may use primitive fields to store actual data or
bookkeeping information. As we saw earlier with String,
we can use the role an object plays in a collection to help
distinguish the purpose of its primitive fields. The over-
head judgment scheme classifies contained-primitive
bytes, such as the characters in a String’s character array,
as data; it classifies head-primitive bytes, like those in
the String proper, as primitive overhead. We also consider
entry-primitive bytes as data, rather than primitive over-
head. We do this so as not to penalize applications that com-
bine entry and contained functionality into a single type.4

4 The Java LinkedList, Hashtable, etc. use distinct data types for these two
roles; the GNU Trove [9] collection classes often do not. A collection
health categorization that better distinguished these scenarios would allow
for more precise health judgment for entry-primitive bytes.

Object headers and some pointers are introduced during
class design when deciding which fields to include in a class,
where to use subclassing, and where to delegate fields to sep-
arate classes. We classify bytes spent on object header as
an indicator of small objects – instances with few fields, or
arrays with few elements. We classify pointer and null
bytes as pointer overhead, an infrastructure cost of a highly
delegated or highly interconnected design. Pointers may also
be employed for a different purpose: to maintain one-to-
many relationships. We make this distinction by classify-
ing non-null pointer bytes in array or entry objects as
collection glue. We classify null pointers from array and
entry objects, however, as pointer overhead; they are the
overhead of oversized arrays or very short linked lists.

Table 5 shows the overhead judgment scheme applied to
the data structure in Figure 2. The large values for small ob-
jects and pointer overhead highlight the degree of delegation
in this design.

Figure 4 shows the application of this scheme to a diverse
assortment of snapshots. Table 6 lists the applications in our
corpus. We study snapshots from a large number of real ap-
plications: under-test and deployed servers, and standalone
and Eclipse-based [12] clients. These heap snapshots range
in size from 50 megabytes to 2 gigabytes; the largest snap-
shots contain as many as 20-40 million live objects.

Our corpus also includes snapshots from two benchmark
suites, SPECJVM98 [24] and DaCapo [3] (using dacapo-
beta051009.jar). For each benchmark, we configure it to
run its largest configuration, and acquire several dozen heap
snapshots during the run. We generally pick the largest
snapshot from among those collected.5 It is worth noting
that none of the benchmarks have heaps bigger than 10
megabytes. Most of the benchmark snapshots were consid-
erably smaller than that.

3.2 The Scaling Judgment Scheme
The scaling judgment scheme distinguishes contained ob-
jects from collection implementations, exposing how each
contributes to overhead. Table 7 shows how it is derived
from the health signature. The primary distinction is between
contained objects (the first row in the table) and head,
array, and entry objects (the remaining rows). Within each
we define two finer categories. For contained data, we label
as data any primitive field data, just as we did in the overhead
judgment scheme. We label the rest of the bytes – object
headers and null and non-null pointers – as data overhead.
For objects implementing collection infrastructure, we di-
vide their bytes into fixed and variable collection overhead.
Fixed collection overhead includes all of the bytes in head-
of-collection objects, and the object header portion of arrays

5 In cases where one snapshot was marginally smaller but considerably
more unhealthy, we chose to present, in Figure 4, the unhealthy one.



application description
A, P Eclipse-based programs
C, G, H, I, L, M financial services server
E, Q catalog management server
B, N, F Java clients
D, J, K, O, R collaboration servers
S standalone Java program
serverbench application server benchmark
dacapo the DaCapo benchmark suite
specjvm the SPECJVM98 benchmark suite

Table 6. Our corpus of Java heap snapshots, taken from
real applications and benchmarks. The real applications have
50MB to 2GB of live objects. The DaCapo and SPECJVM
benchmarks are both relatively tiny in this regard.
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Figure 4. A judgment scheme, in this case the overhead
judgment scheme, allows for quick comparison of the health
of disparate applications. For example, application Q has
780M of live objects, of which only 234M is actual data.

primitive header pointer null
contained data data overhead

head fixed collection overhead
array
entry variable collection overhead

Table 7. The scaling health judgment scheme.

scaling judgment size
data 12
data overhead 36
fixed collection overhead 156
variable collection overhead 160
total 364

Table 8. The scaling judgment scheme applied to the exam-
ple in Figure 2.

of references. 6 Variable collection overhead includes bytes
allocated for the elements of arrays of references, whether
null or non-null, and all of the bytes of entry objects.

Table 8 shows the scaling judgment scheme applied to the
example in Figure 2. This breakdown highlights the degree
to which memory is devoted to collection overhead, both
fixed and variable.

3.3 An Example: Applying Health Judgment Schemes
In this section we walk through an example from a real-
world application with large footprint problems, to demon-
strate the power of the two health judgment schemes. The ex-
ample also illustrates the variety of memory problems seen
in industrial applications. The application is a planning sys-
tem, application S in Table 6. It was at the prototype stage
of development, and as such, the primary concern was pro-
ducing a working algorithm quickly. Like many industrial
applications, even those much closer to production, memory
usage was not taken into account until a problem appeared.

The primary data structure is a level graph where the
same vertex may appear with different edges at multiple lev-
els of the graph. We explore one particularly expensive data
structure: the representation of the edges. Figure 7 shows a
schematic view of that portion of the data, which cost 42MB
in this run. Each node in the figure represents instances hav-
ing the same ownership context; some intermediate classes
have been elided (explained formally in Section 4.2). The
node labels reflect the cost of all instances at that node, in-
cluding those of elided classes. Edges are labeled with their
average fan out. In the application’s level graph, each edge
is stored as an Edge object pointing to its source and tar-
get vertices. There are two indexes for looking up the edges
for a (vertex, level) pair: one for in- and one for out-edges.
The indexes are implemented as HashMaps (the left-most

6 In Java there are no per-array primitive fields. If there were, they would be
included in this category.



scaling judgment outer HashMap Arrays$ArrayList HashSet
data 2.6M 0.3M 2.4M
data overhead 9.0M 0.8M 8.2M
fixed collection overhead 7.4M 3.0M 4.4M
variable collection overhead 24.5M 0.8M 21.2M
total 43.5M 4.9M 36.2M

Table 9. The scaling judgment scheme applied to a large data structure of application S. The size of each category represents
the sum of bytes categorized that way for all objects under the given collection.

HashMaps in the figure). The key is a 2-element ArrayList,
containing an Integer level number and a pointer to a ver-
tex. The value is a HashSet of Edges. In this run, there were
approximately 148,000 edges.

The first column of Table 9 shows the scaling judgment
scheme applied to this data. We can see that a very small
portion of the bytes, 6%, are devoted to actual data, while
74% are devoted to collections. While we would expect an
index, especially one mapping each key to many values, to
involve a significant amount of overhead due to collections,
we would not expect it to so completely swamp the data.
What is more telling is how much memory (7.4MB or 17%)
is devoted to collection fixed overhead costs. According to
the developer, this was a production-scale run, not a small
test. We would expect the collection fixed costs to be amor-
tized across a run with 148,000 edges. The fact that they are
so large suggests that some of these costs are being magni-
fied rather than amortized.

We next compute scaling judgments over the two subor-
dinate data structures, first the keys and then the values, since
each may have different characteristics. According to the de-
veloper, the Arrays$ArrayList class was chosen not because
a one-to-many relationship was needed, but rather for expe-
diency of coding, since it enabled a coding idiom where test
cases with constant vertex/values pairs could be coded in a
single line. The second column in Table 9 shows the cost of
using a collection class for this purpose: high fixed and vari-
able collection overhead costs. The high fixed component
(73% of the keys’ cost) is due to requiring two instances, an
ArrayList and array, to store just two elements. The use of
an ArrayList also required the programmer to box the level
number into an Integer, adding to the data overhead and vari-
able collection costs.

The overhead judgment scheme can provide another view
into this design, shedding light on overall overhead costs
across contained and collection data. The first column in Ta-
ble 10 illustrates this analysis for the keys. The high value
for small objects is a consequence of the two levels of del-
egation, from Arrays$ArrayList to Object array to Integer.
The developer can easily replace this design with a single
class: Pair {int level; Object vertex;}. The second column in
Table 10 shows the reduction that would be achieved.

The third column of Table 9 shows the scaling judg-
ment over the values: the HashSets and the Edges they

overhead judgment
(current)

Arrays$ArrayList
(proposed)

Pair
data 0.3M 0.3M
primitive overhead 0.3M 0M
small objects 3.2M 1.1M
pointer overhead 0.3M 0.3M
collection glue 0.8M 0M
total 4.9M 1.7M

Table 10. The overhead judgment scheme helps to compare
current and proposed implementations of a HashMap’s keys
in a large data structure of application S.

hold. Notice that the majority of the cost is due to collec-
tion overhead here as well, with significant fixed and vari-
able components. The standard Java HashSet, which stores
a set of unique values, is implemented by delegating to the
more general HashMap, which in turn points to an array
of HashMap$Entry objects that point to keys and values,
and to each other.7 The delegation of HashSet to HashMap
raises the fixed collection overhead for each of these nested
HashMaps; the overgenerality of HashMap raises both the
fixed and variable overhead costs: the HashMap has book-
keeping fields that are not relevant to this use, and all of the
inner HashMap$Entry objects point to the same (unused)
singleton value. Note that overall, a HashMap$Entry, con-
taining four fields, is larger than the Edge object that it is
indexing. This is one of the reasons behind the high vari-
able collection overhead cost in our data structure. Note also
that the fixed collection overhead cost is high because each
HashMap holds only 4–5 elements on average.

The choice of ArrayList seemed to the developer like an
inappropriate choice once the costs were known. The choice
of HashSet seemed more reasonable for the intended use.
The developer wanted the code to be safe by guaranteeing
uniqueness, and assumed that the widely-used standard Java
HashSet would be well optimized. One can easily imagine
refactored HashSet and HashMap classes that shared code
while optimizing for these two different uses.

7 We use framework knowledge to classify the HashSet as head of collec-
tion, though it would not normally be classified as such solely on the basis
of structure.



4. Asymptotic Analysis
Ideally, health should improve as input size increases, be-
cause fixed infrastructure costs are amortized over increas-
ingly large amounts of data. Unfortunately, with multiple
data structures and nested collections, this may not be the
case. In many situations, the fraction of actual data in an
application reaches an asymptotic value. In this section, we
first present a simple example that illustrates the asymptotic
behavior of memory health. To model this behavior, we in-
troduce a definition of a data structure and a summary of its
internal structure. We then provide an algorithm for automat-
ically constructing formulas, on a per-data structure basis.
Each formula predicts how a data structure’s memory health
changes as the sizes of its components vary. Finally, we give
examples of scaling studies that are enabled by having these
formulas, and demonstrate them on an application from our
test suite.

4.1 Observations of Asymptotic Behavior
Consider a linked list that stores data structures each of
which has a collection health categorization of 4 bytes of
contained, 24 bytes of head, and 8 bytes of entry. The
linked list itself imposes 4 bytes of entry per contained
structure and 12 bytes of head. We focus on these cate-
gories to keep this motivating example simple. With one
contained structure, the relevant portion of the collection
health categorization, (contained, head, entry), will be
(4, 36, 12); with two contained structures (8, 60, 20); with n
entries, (4n, 24n + 12, 8n + 4). In absolute terms, all three
categories approach infinity. However, any one category, rel-
ative to the whole, approaches an asymptotic value. When
we normalize, we get (8%, 69%, 23%) with one entry, and
(9%, 68%, 22%) with two entries. In the limit of large n,
this will approach (11%, 67%, 22%).

OBSERVATION 1. The ratio of any health signature cate-
gory to the sum of all health signature categories approaches
an asymptotic value. This value is governed by the health of
the collections and contained structures.

To illustrate asymptotic behavior in more depth, we ex-
periment with three variations of a collection of collections
of primitive bytes (recall this example from the introduc-
tion). The first uses the standard Java LinkedList collection
for both the outer and the inner collections, and a distinct
data type T to store the primitive byte field: a LinkedList
of LinkedLists of instances of T . The second has the same
shape, but replaces the Java list implementation with one
from GNU Trove [9]. Trove avoids the entry costs, by re-
quiring that T implement the next and previous pointers it-
self. The third uses an array of primitive byte arrays.8

Figure 5 shows the asymptotic behavior of these three im-
plementations, as the size of the inner and outer collections
vary. We use the overhead judgment scheme to categorize

8 A two-dimensional primitive byte array would further reduce bloat.
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Figure 6. The overhead health judgments for the four
largest data structures of application O

.

the bytes of each scenario. The x-axis of each chart plots an
increasing size of the outer collection; the four columns of
charts show the behavior of an inner collection size of, in
order from left to right, 10, 102, 103, and 104. We have an-
notated the fraction of data in each chart. For example, the
standard Java LinkedList approaches 8–10% data and the
Trove implementation approaches 8–17% data. Because the
design of these structures is so poor, Trove improves health
by only a small amount. In contrast, the array of primitive
byte arrays scales in a much more healthy way. The asymp-
totic health ranges from 34% to 98%. In addition, with large
enough inner collections, the health improves as data size
increases.

The health of the whole heap varies depending on how
each data structure within the heap changes. The results
shown in Figure 5 and in previous sections were the result of
analyzing the heap as a whole. An unhealthy data structure
may become more healthy as it increases in size. But, if
a second, healthier data structure stays fixed in size, while
an unhealthy one increases in size, the combined effect of
the two will show the downwards trend, as in most of the
experiments of Figure 5. In those examples, the JVM itself
includes some unchanging data structures that, compared to
the ones experimented with, are relatively healthy.

4.2 The Content Schematic
To study the asymptotic behavior of health, we must analyze
at a finer granularity than the whole heap. We show how to
decompose the heap into data structures, and how to arrange
each data structure into a tree of regions that may possibly
change in size. We refer to this data structure summary as a
content schematic.

First, we define data structures by unique ownership,
drawing on earlier work [15].

DEFINITION 1. Given a heap snapshot considered as an
object reference graph G, a data structure of G rooted at type
t is the equivalence class of trees in the dominator spanning
forest of G whose root node has type t.9

9 In the case of diamond structures or root sharing, we refer the reader
to [16] and [15]. For these situations, we chose to use the heuristic for
handling shared ownership described in [16].
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(a) Java’s LinkedList of LinkedLists of Objects, each with a single byte field
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(b) GNU Trove’s TLinkedList of TLinkedLists of Objects, each with a single byte field
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(c) Array of primitive byte arrays

Figure 5. The overhead judgment scheme illustrates the asymptotic behavior of memory health. The three rows show three
implementations of a collection of collections of bytes. The four columns show inner collections of size 10, 100, 1000, and
1000. The x-axis of each plot corresponds to increasing the size of the outer collection.

Memory health varies widely across the data structures
of an application. For example, Figure 6 shows the overhead
judgment scheme applied to the four largest data structures
of application O. Each has a distinct health signature.

To model the scaling properties of a data structure, we
must identify its expansion points. To do so, we leverage the
backbone-folding and type-indistinguishable equivalence re-
lations introduced in [15] to group objects into “regions”.
The backbone-folding equivalence relation folds any array
or entry object into the nearest head, and any contained
object into the nearest parent contained object that is a
child of an array or entry object. In this way, container-
related infrastructure objects are grouped with the own-
ing container, and the constituents of contained data struc-
tures are similarly unified with the head of contained struc-
tures. The type-indistinguishable relation creates a class
for head objects that share the same path-to-root of head

and contained data types; similarly, it creates a class for
contained objects with the same paths-to-root.10

DEFINITION 2. Given an object i that dominates a set of
objects O, a region of i is the subset of objects in O
equivalent according to the backbone-folding and type-
indistinguishable equivalence relations. The heads of a re-
gion are those objects at the head of a chain of backbone
folding. When we refer to the region type of a region, we
mean the type of the head objects. Finally, the number of
elements in a region is the number of head instances of that
region.

Under this definition, observe that a region is capable of
changing in size if the region type of its parent region is

10 The composition of these two equivalence relations is similar to the
calling context tree [1], except in how it deals with recursive structures,
and how it folds contained structures together.
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Figure 7. The largest regions in a 40MB data structure
of application S. The average number of elements of each
region is shown on the incoming edge label. Each region is
labeled with the size of objects that fall into its equivalence
class. Small regions are drawn as circles.

classified head. Furthermore, since we define regions over
the dominator forest, the regions under any given object form
a tree.

DEFINITION 3. For a region r, the parent p(r) of r is the
region headed by objects that most closely dominate objects
that point to the heads of r. The average number of elements
of r is the ratio of the number of elements in r to the number
of elements in p(r). Given a data structure i, the content
schematic of i is the tree of regions comprising i.

For example, Figure 7 shows the content schematic for a
subset of the largest data structure in application S (the same
subset studied in Section 3.3). The figure labels each node
with the region type of that region, and with the sum of the
instance sizes of objects that fall into the equivalence class
of that region. The figure labels an edge between regions r1

and r2 with the average number of elements in r2.

4.3 Scaling Formulas
The health of a data structure depends upon the contribu-
tions of its constituent regions. To construct a formula that
predicts its health, we first define the incremental contribu-
tion of every region to the cumulative health.

DEFINITION 4. Given a region r, the base health signature
of r is the health signature H computed over just those ob-
jects that belong to r. The per-element base health signature
of r is its base health signature normalized by the average
number elements of r.

For every region in a data structure, we generate a for-
mula that predicts its cumulative health — i.e. the health of
that region and all its descendants. In this paper, we derive
one formula for the primitive-contained category of the
health signature, and a second formula for the other, infras-
tructural, categories. Observation 1 hypothesized that the ra-
tio of either of these to the total has asymptotic behavior.

DEFINITION 5. Given a region r, let the cumulative amount
of actual data in r be Dr. Let the cumulative amount of

overhead be Jr. We define the scaling formula of r to be:

Sr =
Jr + Dr

Dr
= 1 +

Jr

Dr

Note that we have defined S to be the total number of
bytes divided by the data bytes, rather than the other way
around. We do this only because it leads to simpler formulas.

To explore the limits of memory health, and to make
predictions of health under various conditions that might
not have been captured by any dynamic run, we express the
scaling formula symbolically. A symbolic scaling formula
is a function of three main data structure properties: the
data structure’s nesting of regions, the health of collections,
and the health of contained objects. Table 11 summarizes
the independent variables that we consider. We now define
these factors and show how to derive the set of symbols for
a given region— i.e. the domain of the scaling formula S.
After deriving the set of unknowns, we then express D and
J in terms of those unknowns.

The Expansion Factors of a Content Schematic The con-
tent schematic’s nesting of regions in part governs how its
health changes. For a given content schematic, we identify
three ways in which the nesting structure governs changes
in a data structure’s health. We term these governors of size
expansion factors.

First, as the application runs, the number of elements in
each region may change. For example, this kind of expansion
factor captures the number of distinct keys or values in a
hash map. Observe that this quantity is the same as the
average number of elements in a region. We term these
primary expansion factors.

Second, certain collection implementations may overlap
the variable collection overheads among the child regions.
Consider the outer Java HashMap in Figure 7: it maps keys
of type Arrays$ArrayList to values of type HashSet. The
content schematic includes three regions, one for this outer
HashMap, one for the keys, and one for the values. The
HashMap$Entry objects of the outer HashMap region are
variable collection overhead that is shared between the key
and value regions. In some instances, the magnitude of the
overlap for a region is a fixed constant times the sum of the
primary expansion factors of its child regions. For example,
in a Java HashMap with distinct and never-null key and
values, the overlap factor will always be one half the sum
of the child expansion factors: in this situation, a HashMap
of size 100 will have 100 keys and 100 values. However, it
is often important to consider this overlap has an expansion
factor distinct from the primary expansion factors — e.g.
when key and values overlap, or are sometimes null. We term
these overlap expansion factors.

Finally, it is often desirable to study the effect of vary-
ing the size of primitive arrays; e.g. in an application that
uses Java BigDecimals, or Java Strings, one may wish to ob-
serve the limiting effect of the primitive integer or primitive



symbol meaning
nr average number of elements in region r
mr overlap of e for the children of region r
dr per-contained structure actual data in r
jr per-contained structure overhead in r
ct fixed collection overhead of container type t
et amortized variable collection overhead of t

Table 11. The independent variables in a scaling formula
In Section 4.4, we show how treating these factors as either
unknowns or constants allows exploration of the asymptotic
behavior of the scaling formula S.

character array sizes. We term these primitive expansion fac-
tors.11

DEFINITION 6. Consider a content schematic T with k re-
gions. We denote the primary expansion factors of T by the
symbols n1, . . . , nk, and the overlap expansion factors of T
by the symbols m1, . . . ,mk. An expansion factor may be left
as an unknown, or it may be hard-wired to have a positive
constant expansion factor.

For example, the data structure shown in Figure 7 has
six primary expansion factors. Three of these correspond to
regions whose region heads are classified head (i.e. heads of
collections): n1 for the outer HashMap, n2 for the HashSet,
and n3 for the Arrays$ArrayList. The scaling properties of
the entire structure’s health, and of each enclosed structures,
depends in part upon these expansion factors. Consider the
case of n2: as it increases, the variable overhead of HashSet
collections and the fixed overhead of the Edge data structures
are magnified, but the fixed costs of the outer HashMap are
amortized.

It is often helpful to use the properties of a particular
snapshot to hard-wire the values of certain expansion factors.
For example, given a heap snapshot, it is possible to hard-
wire a primary expansion factor nr to the average number
of elements that belong to r in that heap snapshot. One can
calculate the average or maximum size of primitive arrays in
a certain region, and hard-wire that value for the primitive
expansion factors within that region. Section 4.4 explores
various scenarios of selectively hard-wiring expansion fac-
tors.

It is also possible to estimate a constant value for the over-
lap expansion factor of a region from a heap snapshot: find
all entry objects in that region, and compute the number
of graph edges v in the snapshot that point from one en-
try object to objects in more than one child region. In many
cases, the maximum value of v is a reasonable choice for
hard-wiring that region’s overlap expansion factor.

11 Our current implementation does not make primitive expansion factors
explicit, but instead models primitive array growth by treating the d cost
(described below) as an unknown.

type t et ct

ArrayList 4 16
LinkedList 24 20
HashSet 28 52
TreeSet 36 52

(a) container costs

region r jr dr

Integer 12 4
Edge 24 8

(b) contained costs for re-
gions head by the given type

Table 12. For data types inferred to be heads of collections
or heads of contained structures, we can optionally hard-wire
c, e, j, and d to the numeric values given by the per-element
base scaling judgment scheme for those collection types.
This table gives some example values, in bytes, from various
Java standard collections and for the contained structures in
the application from Figure 7.

The Effects of Collection Choices The scaling properties
of a data structure also depend on the kinds of collections
used, and how those collections scale. Each collection im-
plementation incurs a fixed infrastructure cost that can be
amortized across all elements in the collection, and an in-
frastructure cost for every contained data structure.

DEFINITION 7. Given a region r with a head of container
type t, the fixed infrastructure cost of r is denoted by ct;
when we write cr, we mean this as shorthand for the numeric
value 0, if the heads of r are not heads of containers, or ct

otherwise. Likewise, we define et and the shorthand er to be
the variable infrastructure cost. We say that ct or et is hard-
wired if it is assigned a non-negative constant value.

This definition assigns a single pair (ct, et) to each col-
lection type t, rather than one pair for each instance of a
collection type. This accurately reflects the scaling behav-
ior of most collections. However, in some cases there will
be e costs that are amortized over a number of contained el-
ements. Consider the case of a Java HashMap, which uses
explicit chaining to handle hash collisions. For this collec-
tion implementation, the pointer bytes for the base array are
amortized over all contained elements with the same hash
code. We have chosen to simplify the presentation for this
paper, and so do not account for these amortized e costs.

To compute ct and et, we can leverage the scaling judg-
ment scheme introduced in Section 3.2. First, pick an in-
stance of collection type t, and compute its per-element base
scaling judgment. Then set ct to be the size of the fixed col-
lection overhead category of the judgment; set et to be the
size of the variable collection overhead category.

For example, we can account for the differences in the
way a HashMap and a LinkedList scale. Table 12(a) provides
values of c and e for four collection implementations from
the standard Java library. These values were automatically
generated using our implementation of the above algorithm.
In generating a scaling formula, one may choose to hard-
wire c and e to numeric values in this way, or may treat them
as unknowns. The former analysis enables one to study the
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∑
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nr′Dr′

Jr = cr + jr −mrer +
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nr′ (er + Jr′)

Figure 8. For a region r, the formulas for the cumulative
actual data Dr and infrastructure overhead Jr.

scaling effects of a given set of collection choices, while the
latter allows one to study the effect of swapping one collec-
tion implementation for another. In this paper, we focus on
the former.

The Effects of Contained Structure Design Finally, the
scaling formula of a region depends upon the health of the
contained data structures.

DEFINITION 8. Given a region r, we denote the per-element
actual data to be dr, and the per-element infrastructure cost
to be jr.

Observe that the values of dr and jr can be computed
just as we did for ct and et. First, compute a per-element
base scaling judgment for r. Then dr and jr are the values
of the judgment from the data category and the data overhead
categories, respectively. For example, Table 12(b) shows the
values of d and j derived automatically for the application
S. Each of the two rows corresponds to a region from Fig-
ure 7 whose region heads are classified as contained. The
Integer object has the expected four bytes of data per ele-
ment, plus twelve bytes of data overhead (since this analysis
was performed on a snapshot from a JVM with twelve-byte
object headers). The Edge object has proportionally higher
costs of each: 8 and 24 bytes, respectively.

Scaling Formulas For a region r, the scaling formula Sr

depends on the expansion factors, the c and e overheads,
and on the d and j costs. We model the data and overhead
Dr and Jr with the recursive formulas shown in Figure 8.
The cumulative amount of actual data Dr in region r is
its per-element actual data plus the sum of its children’s
actual data, weighted by their primary expansion factors.
The cumulative amount of infrastructure in r, Jr, is given
by its e overhead and j costs, plus the sum of its children’s
infrastructure costs, weighted by their primary expansion
factors. The infrastructure of r also includes at most one e
cost for every element in the child regions. This may over
count, in the case of overlap. Therefore, the formula for Jr

must subtract off mre, i.e. one e cost for every degree of
variable-cost overlap among the child regions.

Table 13 shows four simple examples of scaling formulas,
generated automatically by our implementation. The rows
of the table show formulas for data structures that contain
Strings in various ways. On its own, a String with d char-

acters has a scaling formula of 1 + 28
d , while an n-element

ArrayList of 2-element HashSets of Strings has a formula
1 + 84

d + 8
nd .

4.4 Using Scaling Formulas for Limit Studies
Simple data structures have simple scaling formulas. In gen-
eral, however, the formulas grow quite complicated. Even
with simple cases such as shown in Table 13, the formulas
alone are not the final story. Rather, they enable a user to
perform a variety of asymptotic studies that illuminate the
limits of health for a given design, or a given use case.

For example, a scaling formula of S1 = 1 + 28
d , corre-

sponding to the String data structure in Table 13, has the
property 1 ≤ S1 ≤ 29. This structure, on its own, is asymp-
totically perfectly healthy: longer and longer Strings become
increasingly healthy until the ratio of total to actual data is
1. Compare this with an ArrayList of 2-element HashSets
of 10-character Strings (note that in Java, each character
consumes two bytes). In this case, S2 = 5.2 + 2

5n , whose
bounds are 5.2 ≤ S2 ≤ 5.6. No matter how many entries
in the ArrayList, the actual data will consume no more than
1/5.2 ≈ 19% of the heap. The health of this second case is
bounded because of poor design choices made for enclosed
structures: short Strings, and small HashSets. Hard-wiring
the expansion factors of the inner regions to be small lets us
explore the limits to which infrastructure costs can be amor-
tized.

In any limit study, one must fix certain unknowns and let
others vary. We experiment with the effect of scaling the big
regions, and also of scaling the average d (the actual data
in contained objects). In the former, we fix what’s inside
large collections, to explore how well health scales given
those lower-level decisions. In the latter, we see how healthy
the contained structures need to be to achieve good health
overall, given a fixed nesting of collections.

To perform a limit study, first choose a region to analyze.
Then, choose which factors to hard-wire, and which to leave
as unknowns. In the case of a big-regions limit study, hard-
wire the expansion factors of not-big regions contained un-
der the chosen region to the average values observed in the
heap snapshot used for analysis. Furthermore, hard-wire the
dr and jr to the average values for region r, as described
above. Use the recursive formulas shown in Figure 8 to gen-
erate S. In our implementation, we then use a symbolic alge-
bra system, Maxima [7], to simplify the formulas. We then
use Maxima to compute limits. In some cases, the limit of
S approaches 1 as the unknowns increase; this is usually the
case when treating d as an unknown (with increasing actual
data in one’s data structures, the health increases monotoni-
cally). In this situation, we can use Maxima to solve for the
value of d necessary to achieve good health, e.g. S < 1.2
(which corresponds to a fraction of at least 80% actual data).

We first present results for some simple structures. The
third and fourth columns of Table 13 give the results of these



data structure scaling formula (S) vary n with d = 20 d necessary for S < 1.2

String with d bytes of characters 1 + 28
d S = 2.4 d > 140

n-elt. ArrayList of Strings 1 + 32
d + 16

nd 2.6 ≤ S ≤ 3.4 d > 160

n-elt. HashSet of Strings 1 + 52
d + 16

nd 3.7 ≤ S ≤ 4.4 d > 270

n-elt. ArrayList of 2-elt. HashSets of Strings 1 + 84
d + 8

nd 5.2 ≤ S ≤ 5.6 d > 420

Table 13. Four example scaling formulas and two limit studies: for Strings with 20 bytes of characters the bounds of health
that each structure can achieve, and the size of the Strings necessary in order to achieve good health (S < 1.2).

two studies for our simple examples. Observe that a String
must have at least 140 characters in order to achieve an
S < 1.2 (i.e. no more than 80% actual data). When Strings
are placed in a standard Java HashSet, they must have at least
270 characters to achieve this level of health. On the flip side,
placing 10-character Strings into a HashSet will result in an
S of no less than 3.7 (i.e. no more than 27% actual data), no
matter how many Strings are placed into the HashSet.

We now perform the two limit studies on the subset of
application S analyzed in Section 3.3 (and visualized in Fig-
ure 7). We have omitted the complete formula; it has a large
number of unknowns, and offers an unnecessary level of de-
tail. Each limit study hard-wires many of the unknowns, and
results in formulas that can be more easily studied. Table 14
shows the scaling formulas for the two limit studies. The first
row shows the limit study which varies the number of keys
and values. The formula has two unknowns: m and n, denot-
ing the expansion factors of the two regions that were large
in the given snapshot. These correspond to the HashSet and
ArrayList nodes in Figure 7. This study shows that this sub-
set of the largest data structure of application S is doomed
to have a fraction of actual data between 13% and 17%. Ob-
serve from Figure 4 that application S has a fraction of ac-
tual data lower than either figure. The largest data structure
in the snapshot we analyzed was 170MB, of which 40MB
came from the subset studied here. The remaining space was
largely preallocated, but as yet unfilled, collections! The su-
perposition of these two structures resulted in a overall frac-
tion of actual data of around 8%. The second row poses the
hypothetical study of adding more primitive data to the leaf-
most regions. It shows that, in order to achieve S < 1.2 (at
least 80% actual data), the Edge and Integer structures must
each have at least 242 bytes of data. This study highlights
the severe inefficiencies of the application’s data model.

5. Related Work
This work has been inspired by a variety of research.12 Work
on dynamic metrics [8] provides insight by quantifying pro-
gram bloat. It does not do so in application-neutral terms, nor
does it provide predictive models. There are many powerful
memory profiling tools [23, 25] that identify suspicious data

12 A preliminary version of the work presented in this paper appeared
in [17].

types, or memory leaks [11, 21, 16, 4, 13]. None of them
study the underlying design causes of memory bloat or its
asymptotic behavior. Others have worked on graph summa-
rization [1, 19, 20, 15]. Each of these works has its strengths,
such as for execution time profiling [1] or for more close
coupling with source code [20]. We are aware of no sum-
marization techniques that place the focus on containers and
contained data structures that the content schematic offers.
Automatic heap sizing [27] assumes the program’s health as
written. Conventional asymptotic analysis of algorithms [6]
says nothing about the underlying causes of poor asymptotic
behavior.

Finally, there are a number of works that characterize var-
ious aspects of the program, whether its configuration com-
plexity [5], its defects [14, 26] or general behavior [10], or
its performance bloat [18]. Many of these use application-
neutral categories, but none is targeted to memory consump-
tion, nor provides an asymptotic formulation.

6. Future Directions
Analyzing heap snapshots biases our analysis towards the
longer-lived objects; we are extending this work to cover
shorter-lived data. We can also leverage static information,
and richer type information such as given by generic type
systems, to possibly infer an approximation of health signa-
tures from source code. We also see interesting possibilities
in using health signatures and asymptotic analysis in devel-
opment tools, to assist in better design, earlier in the devel-
opment lifecycle.

One limitation of the current work is its inability to infer
certain kinds of design intent. For example, to populate a
structure may require random insertion and deletion. It is
possible that, by incorporating knowledge about runtime
access patterns, we can aid tool users in teasing out these
cases. For example, it would be helpful to point out cases
where a bloated structure is used well beyond the point
where its construction has been completed. The user may
then consider having two distinct forms: one optimized for
construction, and a second optimized for read-only access.

7. Conclusion
A development team should assess the runtime conse-
quences of their design and implementation choices. Ideally,



limit study scaling formula (S) limit

vary big structures 20m+119n+67
2m+16n+6 5.8 ≤ S ≤ 7.4

d necessary for S < 1.2 1 + 48
d d > 242

Table 14. Two limit studies for Figure 7 (subset of application S).

this assessment should happen early and often, especially
since ameliorating memory bloat may not be possible later
on. In reality, teams often feel a sense of fatalism with re-
spect to memory consumption, that this is an inexorable con-
sequence of the object oriented paradigm. Fortunately, this
is not the case, but it requires knowing whether an applica-
tion’s memory consumption is out of line with its needs.

As a step in that direction, we presented application-
neutral characterizations of the health of a design. They offer
the ability to compare one implementation to another and
to known ideas of goodness, and to study the limits of the
health of a design. By describing the nature of bloat, they
can also serve to educate developers and managers of the
trade-offs inherent in data structure design.
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